In this database can be found Pure-He stellar evolutionary tracks. All details on the physical assumptions, and on the evolutionary properties of the tracks can be find in Costa, Shepherd et al. 2025.
The grids of pure-He stellar tracks contains models computed with an initial mass that ranges from 0.36 M to 350 M, in the metallicity range between Z=1E-6 and Z=0.05. The total dataset contains more than ~1200 tracks. All stellar tracks have been computed with PARSEC v2.0, details can be find in the paper cited above.
The tables for each stellar track contains the quantities listed in the following table
Column number | Quantity | Description |
---|---|---|
1 | MASS | Current total mass [M] |
2 | AGE | Age [yr] |
3 | Dtime | Time-step of the previous model [yr] |
4 | LOG_L | log10 total luminosity [log10 L] |
5 | LOG_TE | Effective temperature [log10 K] |
6 | RSTAR | Star radius [cm] |
7 | CONV | Mass of the convective core (incl. overshooting) [M/Mtot] |
8 | QSCHW | Mass of the unstable core (Schwartzschild criterion, w/o overshooting) [M/Mtot] |
9 | QHEL | Mass of the He-core, i.e. where X < 10-3 [M/Mtot] |
10 | QCAROX | Mass of the Carbon Oxygen (CO) core, i.e. where Y = 10-3 [M/Mtot] |
11 | LOG_Tc | log10 central temperature [log10 K] |
12 | LOG_RHc | log10 central density [log10 g cm-3] |
13 | LOG_Pc | log10 central pressure [log10 10-1 Pa] |
14 | PSI_C | Degeneracy parameter in the center |
15 | G1_AVG | Averaged 1 adiabatic index (through the whole star) |
16 | XCEN | Central H1 mass fraction |
17 | XHE3C | Central He3 mass fraction |
18 | YCEN | Central He4 mass fraction |
19 | XC_CEN | Central C12 mass fraction |
20 | XN_CEN | Central N14 mass fraction |
21 | XO_CEN | Central O16 mass fraction |
22 | XNE_CEN | Central Ne20+Ne22 mass fraction |
23 | XMG_CEN | Central Mg24+Mg25+Mg26 mass fraction |
24 | XSI28_CEN | Central Si28 mass fraction |
25 | RATE | Mass loss or accretion rate [M yr-1] |
26 | Xsup | Surface H1 mass fraction |
27 | Ysup | Surface He4 mass fraction |
28 | XCsup | Surface C12 mass fraction |
29 | XC13sup | Surface C13 mass fraction |
30 | XNsup | Surface N14 mass fraction |
31 | XOsup | Surface O16 mass fraction |
32 | XO18sup | Surface O18 mass fraction |
33 | XNEsup | Surface Ne20 + Ne22 mass fraction |
34 | XMGsup | Surface Mg24 + Mg25 + Mg26 mass fraction |
35 | POLRAD_ENV | Star polar radius [cm] |
36 | EQRAD_ENV | Star equatorial radius [cm] |
37 | OMG_ENV | Angular rotation rate = angular velocity / angular critical velocity |
38 | ANG_VEL_ENV | envelope angular velocity [cm s-1] |
39 | TANVEL_ENV | tangential linear velocity at the equator [cm s-1] |
40 | TOT_INERTIA | Total moment of inertia of the star [g cm2] |
41 | TOT_ANGMOM | Total angular momentum [g cm2 s-1] |
42 | TOT_MOM_LOST | Total angular momentum lost due to stellar wind [g cm2 s-1] |
43 | R_CONV | Radius at CONV [log10 cm] |
44 | RHEL | Radius at QHEL [log10 cm] |
45 | R_CAROX | Radius at QCAROX [log10 cm] |
46 | INERTIA_HEL | He-core inertia [log10 g cm2] |
47 | ANGMOM_HEL | He-core angular momentum [log10 g cm2 s-1] |
48 | INERTIA_CAROX | CO-core inertia [log10 g cm2] |
49 | ANGMOM_CAROX | CO-core angular momentum [log10 g cm2 s-1] |
50 | TMAX | Maximum temperature [log10 K] |
51 | RHTMAX | Density where T = TMAX [log10 g cm-3] |
52 | QTMAX | Mass coordinate where T = TMAX [M/Mtot] |
53 | LNUC | Luminosity produced by nuclear burning [L/Ltot] |
54 | LX | Luminosity by hydrogen burning [L/Ltot] |
55 | LY | Luminosity by helium burning [L/Ltot] |
56 | LC | Luminosity by carbon burning [L/Ltot] |
57 | LNEUTR | Neutrinos luminosity [L/Ltot] |
58 | L_GRAV | Gravitational luminosity [L/Ltot] |
59 | L_ACC | Accretion luminosity [L/Ltot] |
60 | Q_CNV | Mass coordinate depth of convective envelope [M/Mtot] |
61 | DPTH_CNV | Radial depth of convective envelope [log10 cm] |
62 | INERTIA_CNV | Inertia of the convective envelope [log10 g cm2] |
63 | ANGMOM_CNV | Angular momentum of the convective envelope [log10 g cm2 s-1] |
64 | TCNV_YR | Turnover timescale of convective bubble [yr] |
65 | T20L10 | Atmosphere temperature of the gas at = 20 [log10 K] |
66 | RH20L10 | Atmosphere density of the gas at = 20 [log10 g cm-3] |
67 | P20L10 | Atmosphere pressure of the gas at = 20 [log10 10-1 Pa] |
68 | TE20L10 | Effective temperature at = 20 [log10 K] |
69 | R20L10 | Atmosphere radius at = 20 [log10 cm] |
70 | MU20 | Atmosphere molecular weight at = 20 [log10 cm] |
71 | T2_3L10 | Atmosphere temperature of the gas at = 2/3 [log10 K] |
72 | RH2_3L10 | Atmosphere density of the gas at = 2/3 [log10 g cm-3] |
73 | P2_3L10 | Atmosphere pressure of the gas at = 2/3 [log10 10-1 Pa] |
74 | TE2_3L10 | temperature from Stefan-Boltzmann law at = 2/3 [log10 K] |
75 | R2_3L10 | Atmosphere radius at = 2/3 [log10 cm] |
76 | MU2_3 | Atmosphere molecular weight at = 2/3 [log10 cm] |